首页> 外文OA文献 >Kinesin Is an Evolutionarily Fine-Tuned Molecular Ratchet-and-Pawl Device of Decisively Locked Direction
【2h】

Kinesin Is an Evolutionarily Fine-Tuned Molecular Ratchet-and-Pawl Device of Decisively Locked Direction

机译:驱动蛋白是进化上精细调整的分子棘轮和棘爪   决定性锁定方向的装置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional kinesin is a dimeric motor protein that transports membranousorganelles toward the plus-end of microtubules (MTs). Individual kinesin dimersshow steadfast directionality and hundreds of consecutive steps, yetthedetailed physical mechanism remains unclear. Here we compute free energies forthe entire dimer-MT system for all possible interacting configurations bytaking full account of molecular details. Employing merely first principles andseveral measured binding and barrier energies, the system-level analysisreveals insurmountable energy gaps between configurations, asymmetric groundstate caused by mechanically lifted configurational degeneracy, and forbiddentransitions ensuring coordination between both motor domains for alternatingcatalysis. This wealth of physical effects converts a kinesin dimer into amolecular ratchet-and-pawl device, which determinedly locks the dimer'smovement into the MT plus-end and ensures consecutive steps in hand-over-handgait.Under a certain range of extreme loads, however, the ratchet-and-pawldevice becomes defective but not entirely abolished to allow consecutiveback-steps. This study yielded quantitative evidence that kinesin's multiplemolecular properties have been evolutionarily adapted to fine-tune theratchet-and-pawl device so as to ensure the motor's distinguished performance.
机译:常规的驱动蛋白是一种二聚体运动蛋白,其将膜细胞器运送至微管(MT)的正端。个别驱动蛋白二聚体显示出稳定的方向性和数百个连续的步骤,但是具体的物理机制仍不清楚。在这里,我们通过充分考虑分子的细节,计算所有可能的相互作用构型的整个二聚体-MT系统的自由能。系统级分析仅采用第一个原理,并使用了几个测得的结合能和势垒能,揭示了组态之间无法克服的能隙,由机械提升的组态简并性导致的不对称基态,以及禁止过渡以确保两个电机域之间进行协调交替催化。如此丰富的物理效果将驱动蛋白二聚体转化为分子棘轮棘爪装置,从而确定地将二聚体的运动锁定在MT末端,并确保连续的步态和步态。在一定范围的极限载荷下,但是,棘爪装置变得有缺陷,但并未完全取消,以允许连续的后退。这项研究提供了定量的证据,证明驱动蛋白的多分子特性已经进化适应微调棘轮和棘爪装置,从而确保电机的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号